3.9.22 \(\int \frac {\sqrt {\cot (c+d x)}}{a+b \tan (c+d x)} \, dx\) [822]

3.9.22.1 Optimal result
3.9.22.2 Mathematica [C] (verified)
3.9.22.3 Rubi [A] (warning: unable to verify)
3.9.22.4 Maple [A] (verified)
3.9.22.5 Fricas [B] (verification not implemented)
3.9.22.6 Sympy [F]
3.9.22.7 Maxima [A] (verification not implemented)
3.9.22.8 Giac [F]
3.9.22.9 Mupad [F(-1)]

3.9.22.1 Optimal result

Integrand size = 23, antiderivative size = 232 \[ \int \frac {\sqrt {\cot (c+d x)}}{a+b \tan (c+d x)} \, dx=\frac {(a-b) \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}-\frac {(a-b) \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} \left (a^2+b^2\right ) d}-\frac {2 b^{3/2} \arctan \left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )}{\sqrt {a} \left (a^2+b^2\right ) d}-\frac {(a+b) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d}+\frac {(a+b) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} \left (a^2+b^2\right ) d} \]

output
-1/2*(a-b)*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)/d*2^(1/2)-1/2*(a- 
b)*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)/d*2^(1/2)-1/4*(a+b)*ln(1+c 
ot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)/d*2^(1/2)+1/4*(a+b)*ln(1+cot 
(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2))/(a^2+b^2)/d*2^(1/2)-2*b^(3/2)*arctan(a^( 
1/2)*cot(d*x+c)^(1/2)/b^(1/2))/(a^2+b^2)/d/a^(1/2)
 
3.9.22.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.24 (sec) , antiderivative size = 227, normalized size of antiderivative = 0.98 \[ \int \frac {\sqrt {\cot (c+d x)}}{a+b \tan (c+d x)} \, dx=\frac {-8 a^{3/2} \cot ^{\frac {3}{2}}(c+d x) \operatorname {Hypergeometric2F1}\left (\frac {3}{4},1,\frac {7}{4},-\cot ^2(c+d x)\right )-3 b \left (2 \sqrt {2} \sqrt {a} \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )-2 \sqrt {2} \sqrt {a} \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )+8 \sqrt {b} \arctan \left (\frac {\sqrt {a} \sqrt {\cot (c+d x)}}{\sqrt {b}}\right )+\sqrt {2} \sqrt {a} \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )-\sqrt {2} \sqrt {a} \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )\right )}{12 \sqrt {a} \left (a^2+b^2\right ) d} \]

input
Integrate[Sqrt[Cot[c + d*x]]/(a + b*Tan[c + d*x]),x]
 
output
(-8*a^(3/2)*Cot[c + d*x]^(3/2)*Hypergeometric2F1[3/4, 1, 7/4, -Cot[c + d*x 
]^2] - 3*b*(2*Sqrt[2]*Sqrt[a]*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]] - 2*S 
qrt[2]*Sqrt[a]*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]] + 8*Sqrt[b]*ArcTan[( 
Sqrt[a]*Sqrt[Cot[c + d*x]])/Sqrt[b]] + Sqrt[2]*Sqrt[a]*Log[1 - Sqrt[2]*Sqr 
t[Cot[c + d*x]] + Cot[c + d*x]] - Sqrt[2]*Sqrt[a]*Log[1 + Sqrt[2]*Sqrt[Cot 
[c + d*x]] + Cot[c + d*x]]))/(12*Sqrt[a]*(a^2 + b^2)*d)
 
3.9.22.3 Rubi [A] (warning: unable to verify)

Time = 0.97 (sec) , antiderivative size = 197, normalized size of antiderivative = 0.85, number of steps used = 20, number of rules used = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.826, Rules used = {3042, 4156, 3042, 4056, 25, 3042, 4017, 25, 1482, 1476, 1082, 217, 1479, 25, 27, 1103, 4117, 73, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cot (c+d x)}}{a+b \tan (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\cot (c+d x)}}{a+b \tan (c+d x)}dx\)

\(\Big \downarrow \) 4156

\(\displaystyle \int \frac {\cot ^{\frac {3}{2}}(c+d x)}{a \cot (c+d x)+b}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (-\tan \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}{b-a \tan \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4056

\(\displaystyle \frac {b^2 \int \frac {\cot ^2(c+d x)+1}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))}dx}{a^2+b^2}+\frac {\int -\frac {b-a \cot (c+d x)}{\sqrt {\cot (c+d x)}}dx}{a^2+b^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {b^2 \int \frac {\cot ^2(c+d x)+1}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))}dx}{a^2+b^2}-\frac {\int \frac {b-a \cot (c+d x)}{\sqrt {\cot (c+d x)}}dx}{a^2+b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {b^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {\int \frac {b+a \tan \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2+b^2}\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {b^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {2 \int -\frac {b-a \cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {b^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}+\frac {2 \int \frac {b-a \cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {b^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {2 \left (\frac {1}{2} (a-b) \int \frac {\cot (c+d x)+1}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}-\frac {1}{2} (a+b) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}\right )}{d \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {b^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {2 \left (\frac {1}{2} (a-b) \left (\frac {1}{2} \int \frac {1}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} \int \frac {1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )-\frac {1}{2} (a+b) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}\right )}{d \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {b^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {2 \left (\frac {1}{2} (a-b) \left (\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}\right )-\frac {1}{2} (a+b) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}\right )}{d \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {b^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {2 \left (\frac {1}{2} (a-b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} (a+b) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}\right )}{d \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {b^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {2 \left (\frac {1}{2} (a-b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} (a+b) \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {b^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {2 \left (\frac {1}{2} (a-b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} (a+b) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {b^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {2 \left (\frac {1}{2} (a-b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} (a+b) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\cot (c+d x)}+1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )\right )}{d \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {b^2 \int \frac {\tan \left (c+d x+\frac {\pi }{2}\right )^2+1}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (b-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a^2+b^2}-\frac {2 \left (\frac {1}{2} (a-b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} (a+b) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 4117

\(\displaystyle \frac {b^2 \int \frac {1}{\sqrt {\cot (c+d x)} (b+a \cot (c+d x))}d(-\cot (c+d x))}{d \left (a^2+b^2\right )}-\frac {2 \left (\frac {1}{2} (a-b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} (a+b) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {2 b^2 \int \frac {1}{a \cot ^2(c+d x)+b}d\sqrt {\cot (c+d x)}}{d \left (a^2+b^2\right )}-\frac {2 \left (\frac {1}{2} (a-b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} (a+b) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {2 b^{3/2} \arctan \left (\frac {\sqrt {a} \cot (c+d x)}{\sqrt {b}}\right )}{\sqrt {a} d \left (a^2+b^2\right )}-\frac {2 \left (\frac {1}{2} (a-b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} (a+b) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )\right )}{d \left (a^2+b^2\right )}\)

input
Int[Sqrt[Cot[c + d*x]]/(a + b*Tan[c + d*x]),x]
 
output
(2*b^(3/2)*ArcTan[(Sqrt[a]*Cot[c + d*x])/Sqrt[b]])/(Sqrt[a]*(a^2 + b^2)*d) 
 - (2*(((a - b)*(-(ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]]/Sqrt[2]) + ArcTa 
n[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]]/Sqrt[2]))/2 - ((a + b)*(-1/2*Log[1 - Sqr 
t[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]/Sqrt[2] + Log[1 + Sqrt[2]*Sqrt[Cot 
[c + d*x]] + Cot[c + d*x]]/(2*Sqrt[2])))/2))/((a^2 + b^2)*d)
 

3.9.22.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4056
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(3/2)/((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)]), x_Symbol] :> Simp[1/(c^2 + d^2)   Int[Simp[a^2*c - b^2*c + 
2*a*b*d + (2*a*b*c - a^2*d + b^2*d)*Tan[e + f*x], x]/Sqrt[a + b*Tan[e + f*x 
]], x], x] + Simp[(b*c - a*d)^2/(c^2 + d^2)   Int[(1 + Tan[e + f*x]^2)/(Sqr 
t[a + b*Tan[e + f*x]]*(c + d*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e 
, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
 

rule 4117
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[A/f   Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x] /; 
FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
 

rule 4156
Int[(cot[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Cot[e + f*x])^(m - n*p 
)*(b + a*Cot[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 
3.9.22.4 Maple [A] (verified)

Time = 1.13 (sec) , antiderivative size = 279, normalized size of antiderivative = 1.20

method result size
derivativedivides \(\frac {\sqrt {\frac {1}{\tan \left (d x +c \right )}}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) \left (\ln \left (-\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )-\tan \left (d x +c \right )-1}\right ) \sqrt {2}\, \sqrt {a b}\, a +2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \sqrt {a b}\, a -2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \sqrt {a b}\, b +2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \sqrt {a b}\, a -2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \sqrt {a b}\, b -\ln \left (-\frac {\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )-\tan \left (d x +c \right )-1}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right ) \sqrt {2}\, \sqrt {a b}\, b +8 b^{2} \arctan \left (\frac {b \left (\sqrt {\tan }\left (d x +c \right )\right )}{\sqrt {a b}}\right )\right )}{4 d \left (a^{2}+b^{2}\right ) \sqrt {a b}}\) \(279\)
default \(\frac {\sqrt {\frac {1}{\tan \left (d x +c \right )}}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) \left (\ln \left (-\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )-\tan \left (d x +c \right )-1}\right ) \sqrt {2}\, \sqrt {a b}\, a +2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \sqrt {a b}\, a -2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \sqrt {a b}\, b +2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \sqrt {a b}\, a -2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) \sqrt {2}\, \sqrt {a b}\, b -\ln \left (-\frac {\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )-\tan \left (d x +c \right )-1}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right ) \sqrt {2}\, \sqrt {a b}\, b +8 b^{2} \arctan \left (\frac {b \left (\sqrt {\tan }\left (d x +c \right )\right )}{\sqrt {a b}}\right )\right )}{4 d \left (a^{2}+b^{2}\right ) \sqrt {a b}}\) \(279\)

input
int(cot(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x,method=_RETURNVERBOSE)
 
output
1/4/d*(1/tan(d*x+c))^(1/2)*tan(d*x+c)^(1/2)*(ln(-(1+2^(1/2)*tan(d*x+c)^(1/ 
2)+tan(d*x+c))/(2^(1/2)*tan(d*x+c)^(1/2)-tan(d*x+c)-1))*2^(1/2)*(a*b)^(1/2 
)*a+2*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)*(a*b)^(1/2)*a-2*arctan(1+ 
2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)*(a*b)^(1/2)*b+2*arctan(-1+2^(1/2)*tan(d* 
x+c)^(1/2))*2^(1/2)*(a*b)^(1/2)*a-2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*2^ 
(1/2)*(a*b)^(1/2)*b-ln(-(2^(1/2)*tan(d*x+c)^(1/2)-tan(d*x+c)-1)/(1+2^(1/2) 
*tan(d*x+c)^(1/2)+tan(d*x+c)))*2^(1/2)*(a*b)^(1/2)*b+8*b^2*arctan(b*tan(d* 
x+c)^(1/2)/(a*b)^(1/2)))/(a^2+b^2)/(a*b)^(1/2)
 
3.9.22.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1348 vs. \(2 (194) = 388\).

Time = 0.32 (sec) , antiderivative size = 2726, normalized size of antiderivative = 11.75 \[ \int \frac {\sqrt {\cot (c+d x)}}{a+b \tan (c+d x)} \, dx=\text {Too large to display} \]

input
integrate(cot(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x, algorithm="fricas")
 
output
[-1/2*((a^2 + b^2)*d*sqrt(((a^4 + 2*a^2*b^2 + b^4)*d^2*sqrt(-(a^4 - 2*a^2* 
b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) + 2*a*b) 
/((a^4 + 2*a^2*b^2 + b^4)*d^2))*log(((a^4*b + 2*a^2*b^3 + b^5)*d^3*sqrt(-( 
a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^ 
4)) + (a^3 - a*b^2)*d)*sqrt(((a^4 + 2*a^2*b^2 + b^4)*d^2*sqrt(-(a^4 - 2*a^ 
2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) + 2*a* 
b)/((a^4 + 2*a^2*b^2 + b^4)*d^2)) - (a^2 - b^2)*sqrt(tan(d*x + c))) - (a^2 
 + b^2)*d*sqrt(((a^4 + 2*a^2*b^2 + b^4)*d^2*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/ 
((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) + 2*a*b)/((a^4 + 2* 
a^2*b^2 + b^4)*d^2))*log(-((a^4*b + 2*a^2*b^3 + b^5)*d^3*sqrt(-(a^4 - 2*a^ 
2*b^2 + b^4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) + (a^3 
 - a*b^2)*d)*sqrt(((a^4 + 2*a^2*b^2 + b^4)*d^2*sqrt(-(a^4 - 2*a^2*b^2 + b^ 
4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) + 2*a*b)/((a^4 + 
 2*a^2*b^2 + b^4)*d^2)) - (a^2 - b^2)*sqrt(tan(d*x + c))) - (a^2 + b^2)*d* 
sqrt(-((a^4 + 2*a^2*b^2 + b^4)*d^2*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/((a^8 + 4 
*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) - 2*a*b)/((a^4 + 2*a^2*b^2 + 
 b^4)*d^2))*log(((a^4*b + 2*a^2*b^3 + b^5)*d^3*sqrt(-(a^4 - 2*a^2*b^2 + b^ 
4)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) - (a^3 - a*b^2)* 
d)*sqrt(-((a^4 + 2*a^2*b^2 + b^4)*d^2*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/((a^8 
+ 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8)*d^4)) - 2*a*b)/((a^4 + 2*a^2...
 
3.9.22.6 Sympy [F]

\[ \int \frac {\sqrt {\cot (c+d x)}}{a+b \tan (c+d x)} \, dx=\int \frac {\sqrt {\cot {\left (c + d x \right )}}}{a + b \tan {\left (c + d x \right )}}\, dx \]

input
integrate(cot(d*x+c)**(1/2)/(a+b*tan(d*x+c)),x)
 
output
Integral(sqrt(cot(c + d*x))/(a + b*tan(c + d*x)), x)
 
3.9.22.7 Maxima [A] (verification not implemented)

Time = 0.42 (sec) , antiderivative size = 174, normalized size of antiderivative = 0.75 \[ \int \frac {\sqrt {\cot (c+d x)}}{a+b \tan (c+d x)} \, dx=-\frac {\frac {8 \, b^{2} \arctan \left (\frac {a}{\sqrt {a b} \sqrt {\tan \left (d x + c\right )}}\right )}{{\left (a^{2} + b^{2}\right )} \sqrt {a b}} + \frac {2 \, \sqrt {2} {\left (a - b\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left (a - b\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) - \sqrt {2} {\left (a + b\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) + \sqrt {2} {\left (a + b\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )}{a^{2} + b^{2}}}{4 \, d} \]

input
integrate(cot(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x, algorithm="maxima")
 
output
-1/4*(8*b^2*arctan(a/(sqrt(a*b)*sqrt(tan(d*x + c))))/((a^2 + b^2)*sqrt(a*b 
)) + (2*sqrt(2)*(a - b)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)) 
)) + 2*sqrt(2)*(a - b)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)) 
)) - sqrt(2)*(a + b)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) 
+ sqrt(2)*(a + b)*log(-sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1))/( 
a^2 + b^2))/d
 
3.9.22.8 Giac [F]

\[ \int \frac {\sqrt {\cot (c+d x)}}{a+b \tan (c+d x)} \, dx=\int { \frac {\sqrt {\cot \left (d x + c\right )}}{b \tan \left (d x + c\right ) + a} \,d x } \]

input
integrate(cot(d*x+c)^(1/2)/(a+b*tan(d*x+c)),x, algorithm="giac")
 
output
integrate(sqrt(cot(d*x + c))/(b*tan(d*x + c) + a), x)
 
3.9.22.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cot (c+d x)}}{a+b \tan (c+d x)} \, dx=\int \frac {\sqrt {\mathrm {cot}\left (c+d\,x\right )}}{a+b\,\mathrm {tan}\left (c+d\,x\right )} \,d x \]

input
int(cot(c + d*x)^(1/2)/(a + b*tan(c + d*x)),x)
 
output
int(cot(c + d*x)^(1/2)/(a + b*tan(c + d*x)), x)